# Stochastic Optimization Methods for Machine Learning

## Jorge Nocedal

Northwestern University



SIAM CSE, March 2017

### Collaborators

Richard Byrd University of Colorado

o Northwestern

N. Keskar Northwestern

D. Mudigere

P. Tang INTEL

R. Bollagragada

M. Smelyanski

### Roger Fletcher

## 1939-2016



Hís ímagínatíon, orígínalíty and humílíty Wíll be an example for future generatíons.

## **Initial Remarks**

1. Continuous optimization in applied math

B. Stoufflet

- 2. Central role also in Statistics
- 3. I will talk about optimization algorithms that are good learning algorithms that generalize well
- 4. Illustrate with concrete example: training Deep Neural Networks
- 5. Contrast classical gradient-based methods and with the stochastic gradient method
- 6. For decades nonlinear optimization research focused on descent methods (line search or trust region). How else can one obtain (deterministic) convergence guarantees?
- 7. In large-scale machine learning applications, it is best to require only descent in expectation

## Initial remarks

Algorithms whose iterates are random variables and that are allowed to wonder around



- 1. Perform a more effective exploration of the data
- 2. Markov process has shown to be particularly effective: there is randomness at each iteration, but independent of previous decisions
- 3. Such behavior allows the optimization algorithm to produce solutions (prediction functions) that generalize well
- 4. Different from simulated annealing/genetic methods

## Deep neural networks



- Have produced quite a stir since 2011
- How? It is still not well understood,
- Zhang, Bengio, Hardt, Recht, Vinyals (2017)
- A highly nonlinear and non-convex predictor
- Input: images, acoustic frames, text
- Output: image classification, speech recognition, translation

## Example: Speech recognition

Observe features *X* in acoustic frames Predict word or sentence "FREE SPEECH"



7

## Capacity of Deep neural networks



Can be viewed as a function with great expressive capacity: can reproduce large classes of functions

Piecewise polynomial in w of degree 7 in 10 million variables

Or can be seen as a composition of logistic regression units

When training the DNN: Many minimizers, degenerate due to overcapacity

## Our Observations Apply to Dominant Architectures

Feed forward

#### Convolutional Neural Network



## Recurrent Neural Network







## Next

- Illustrate how 2 optimization algorithms that give equally good solutions on the training problem produce solutions with different generalization properties
- Discuss the notable properties of the stochastic gradient method and how it dominates the classical gradient method
- Bottleneck: parallelism
- Search for new optimization algorithms suited for machine learning
- Sub-sampled Newton methods

## Training deep neural networks with:

- stochastic gradient method
- gradient based method (L-BFGS), batch method

## Sharp and wide minima



Observing *training error and testing error* along line from SG solution to batch solution

Deep convolutional neural net CIFAR-10

Stochastic gradient solution

SG: mini-batch of size 256 ADAM optimizer full gradient methodsolution

Batch: 10% of training set

## Accuracy: correct classification

#### Keskar et al. (2016)



## Another example

#### Keskar et al. (2016)



Gradient method "over-fits"

We need to back-up: Define setting of supervised training Describe of optimization methods and their properties

# Supervised Learning

Given a sizable training set of size n; each example *i* consists of  $x_i$ : feature information  $y_i$ : correct label

Given a sizable training set of size *n*; each example *i* consists of  $x_i$ : feature information  $y_i$ : correct label Define prediction function *h* that depends on unknown parameter *w*,  $h(w;x) = w^T x$  or h(w;x) = nonlinear that makes good predictions on unseen data  $(\hat{x}, \hat{y})$ 

that makes good predictions on unseen data  $(\hat{x}, \hat{y})$ 

$$\overline{y} = h(w; \hat{x})$$
 with  $\overline{y} \approx \hat{y}$ 

Choose a loss function  $\ell(\overline{y}, \hat{y})$  and solve optimization problem

$$\min_{w} F(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(w; x_i), y_i)$$

### Loss Functions

Logistic regression:  $\log(1 + \exp(-y(w^T x)))$ 

For multi-class classification, *C*= set of classes

$$F(w) = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp(w_{y_j}^T x_i)}{\sum_{j \in C} \exp(w_j^T x_i)}$$



### Training error vs Testing Error --- Learning Algorithms

 $(x,y) \in Z$  denotes all input-output pairs with distribution P(x,y)Define  $f(w,x_i,y_i) = \ell(h(w;x_i),y_i)$ 

Expected Risk: 
$$F(w) = \int f(w; x, y) dP(x, y)$$
  
Empirical Risk:  $R(w) = \frac{1}{n} \sum_{i=1}^{n} f(w; x_i, y_i)$ 

$$R(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Problem

 $f_i \equiv f(w; x_i, y_i)$  denotes the loss associated with the *i*-th data point

### **Optimization Problem**

7 hidden layers 2000 units per layer 9000 label classes

6–44 million total parameters *w*3.6–360 million examples

#### A. Kingsbury



Therefore the problem:  $\min_{w} F(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(h(w; x_i), y_i)$ 

Is a formidable optimization problem.

Training time  $\sim 2$  days to 1 week

.. and deserves the respect of the CSE audience

## Stochastic Gradient Method

For empirical risk minimization:

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

$$w_{k+1} = w_k - \alpha_k \nabla f_i(w_k)$$

$$i \in \{1, ..., n\}$$
 choose at random

- Very cheap, noisy iteration; gradient w.r.t. just 1 data point
- Not a gradient descent method
- Stochastic process dependent on the choice of i

SAA

$$w_{k+1} = w_k - \alpha_k \nabla R_n(w_k)$$

gradient method

$$w_{k+1} = w_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(w_k)$$

- More expensive, accurate step
- Can choose among a wide range of optimization algorithms
- Opportunities for parallelism

Why has SG emerged as the preeminent method?

Computational trade-offs between stochastic and batch methods Ability to generalize: minimize F Efficiency



Logistic regression; speech data

Fast initial progress of SG followed by drastic slowdown

Can we explain this?

# Intuition

SG employs information more efficiently than batch methods

## Argument 1:

Suppose data consists of 10 copies of a set S Iteration of batch method 10 times more expensive SG performs same computations



Note that this is a geographical argument

Analysis: given  $w_k$  what is the expected decrease in the objective function  $R_n$  as we choose one of the quadratics randomly?

# Computational complexity

Total work to obtain  $R_n(w_k) \le R_n(w^*) + \epsilon$ 

Batch gradient method: $nd\kappa \log(1/\epsilon)$ Stochastic gradient method: $dv\kappa^2/\epsilon$ 

Think of  $\epsilon = 10^{-3}$ 

- *n*: # of training points
- d: # of variables
- $\kappa$ : condition number

Srebro et al. Bottou et al.

# A fundamental inequality

$$\mathbb{E}_{k}[R_{n}(w_{k+1}) - R_{n}(w_{k})] \leq -\alpha_{k} \|\nabla R_{n}(w_{k})\|_{2}^{2} + \alpha_{k}^{2} \mathbb{E}_{k} \|\nabla f_{i_{k}}(w_{k})\|^{2}$$

Initially, gradient decrease dominates; then variance in gradient hinders progress

To ensure convergence:  $\alpha_k \rightarrow 0$  in SG method to control noise Variance reduction methods directly control the noise given in the last term

The variant when  $\alpha_k = \alpha$  is constant has also been thorough studied and yields convergence to a neighborhood of the solution at linear rate

Bottou, Curtis, Nocedal (2016) prepared for SIAM Review

## Let us look more closely at the training of deep Neural networks

It has been known for a long time that batch methods are inferior

- Accuracy is lost with increase in batch size
- ADAM optimizer: 256 (small batch) v/s 10% (large batch)



# Training and Testing Accuracy

SB: small batch LB: large batch

|              | Training Accuracy    |                      | Testing Accuracy     |                      |
|--------------|----------------------|----------------------|----------------------|----------------------|
| Network Name | SB                   | LB                   | SB                   | LB                   |
| $F_1$        | $99.66\% \pm 0.05\%$ | $99.92\% \pm 0.01\%$ | $98.03\% \pm 0.07\%$ | $97.81\% \pm 0.07\%$ |
| $F_2$        | $99.99\% \pm 0.03\%$ | $98.35\% \pm 2.08\%$ | $64.02\% \pm 0.2\%$  | $59.45\% \pm 1.05\%$ |
| $C_1$        | $99.89\% \pm 0.02\%$ | $99.66\% \pm 0.2\%$  | $80.04\% \pm 0.12\%$ | $77.26\% \pm 0.42\%$ |
| $C_2$        | $99.99\% \pm 0.04\%$ | $99.99 \pm 0.01\%$   | $89.24\% \pm 0.12\%$ | $87.26\%\pm 0.07\%$  |
| $C_3$        | $99.56\% \pm 0.44\%$ | $99.88\% \pm 0.30\%$ | $49.58\% \pm 0.39\%$ | $46.45\%\pm 0.43\%$  |
| $C_4$        | $99.10\% \pm 1.23\%$ | $99.57\% \pm 1.84\%$ | $63.08\% \pm 0.5\%$  | $57.81\% \pm 0.17\%$ |

No Problems in Training!

# Network configuarions

#### Table 1: Network Configurations

| Name  | Network Type            | Architecture | Data set                              |
|-------|-------------------------|--------------|---------------------------------------|
| $F_1$ | Fully Connected         | Section B.1  | MNIST (LeCun et al., 1998a)           |
| $F_2$ | Fully Connected         | Section B.2  | TIMIT (Garofolo et al., 1993)         |
| $C_1$ | (Shallow) Convolutional | Section B.3  | CIFAR-10 (Krizhevsky & Hinton, 2009)  |
| $C_2$ | (Deep) Convolutional    | Section B.4  | CIFAR-10                              |
| $C_3$ | (Shallow) Convolutional | Section B.3  | CIFAR-100 (Krizhevsky & Hinton, 2009) |
| $C_4$ | (Deep) Convolutional    | Section B.4  | CIFAR-100                             |

# Sharp and flat minima

#### Keskar et al. (2016)



Observing *R* along line From SG solution to batch solution *Goodfellow et al* 

Deep convolutional Neural net CIFAR-10

SG: mini-batch of size 256 Batch: 10% of training set ADAM optimizer

## Sharp minima



## Testing accuracy and sharpness Keskar (2016)



Testing accuracy vs batch size

Sharpness of minimizer vs batch size

Sharpness: *Max R* in a small box around minimizer









### **Sharpness Metric**

Given a minimizer  $w^*$  and a box B of width  $\epsilon$  centered at  $w^*$ , we define the sharpness of  $w^*$  as

$$max_{w \in B} \frac{f(w^* + w) - f(w^*)}{1 + f(w^*)}$$



Box B

# Robust Optimization View

$$\min_{x} \quad \phi(x) := \max_{\|\Delta x\| \le \epsilon} f(x + \Delta x)$$



#### Hot starts P 85 Testing Accuracy Testing Accuracy 80 75 70 SB SB Piggyback LB 65 Piggyback LB





- Can one understand reasons for convergence to *sharp minima*?
- What is the relative frequency of flat and sharp minima?
- Is there anything inherent to the architecture of the network that causes this behavior?
- Can one **steer** the training method away from sharp minima?
- Is a robust formulation feasible?

# Drawback of SG method: distributed computing

#### SG is notoriously hard to parallelize

- Because it updates the parameters w with high frequency
- Because it slows down with delayed updates.

#### SG still works with relaxed synchronization

• Because this is just a little bit more noise.

#### Communication overhead give room for new opportunities

- There is ample time to compute things while communication takes place.
- Opportunity for optimization algorithms with higher per-iteration costs
- $\rightarrow$  SG may not be the best algorithm for distributed training.

## Beyond the stochastic gradient method

Let's consider an algorithm that is more general

$$R_n(w) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Choose  $S \subset \{1,...,n\}$ ,  $X \in \{1,...,n\}$  uniformly and independently

$$\nabla^2 F_S(w_k) p = -\nabla F_X(w_k) \qquad w_{k+1} = w_k + \alpha_k p$$

Sub-sampled gradient and Hessian

$$\nabla F_X(w_k) = \frac{1}{|X|} \sum_{i \in X} \nabla f_i(w_k) \quad \nabla^2 F_S(w_k) = \frac{1}{|S|} \sum_{i \in S} \nabla^2 f_i(w_k)$$

Focus on true objective: expected risk F

The stochastic nature of the objective creates opportunities:

Coordinate Hessian sample *S* and gradient sample *X* for optimal complexity

## Active research area

- Friedlander and Schmidt (2011)
- Byrd, Chin, Neveitt, N. (2011)
- Erdogdu and Montanari (2015)
- Roosta-Khorasani and Mahoney (2016)
- Agarwal, Bullins and Hazan (2016)
- Pilanci and Wainwright (2015)
- Pasupathy, Glynn, Ghosh, Hashemi (2015)
- Xu, Yang, Roosta-Khorasani, Re', Mahoney (2016)
- Byrd, Bollapragada, N. (2016)

Linear convergence

Focus on Expected Risk F

$$\nabla^2 F_{S_k}(w_k) p = -\nabla F_{X_k}(w_k) \qquad w_{k+1} = w_k + \alpha p$$

The following result is well known for strongly convex objective:

Theorem: Under standard assumptions. If a)  $\alpha = \mu / L$ b)  $|S_k| = \text{constant}$ c)  $|X_k| = \eta^k \quad \eta > 1$  (geometric growth) Then,  $\mathbb{E}[||w_k - w^*||] \rightarrow 0$  at a linear rate and work complexity matches that of stochastic gradient method

Byrd, Chin, N. Wu, 2012

- $\mu$  = smallest eigenvalue of any subsampled Hessian
- L = largest eigenvalue of Hessian of F

## Local superlinear convergence

We can show the linear-quadratic result

$$\mathbb{E}_{k}[\|w_{k+1} - w^{*}\|] \leq C_{1} \|w_{k} - w^{*}\|^{2} + \frac{\sigma \|w_{k} - w^{*}\|}{\mu \sqrt{|S_{k}|}} + \frac{\nu}{\mu \sqrt{|X_{k}|}}$$

#### To obtain superlinear convergence:

i) |S<sub>k</sub> |→∞
ii) |X<sub>k</sub> | must increase faster than geometrically

Theorem: under the conditions just stated, there is a neighborhood of  $w^*$  such that for the sub-sampled Newton method with  $\alpha_k = 1$  $\mathbb{E}[\|w_k - w^*\|] \to 0$  superlinearly

### Inexact Methods- what iterative solver to use?

$$\nabla^2 F_S(w_k) p = -\nabla F_X(w_k) \qquad w_{k+1} = w_k + \alpha_k p$$

- 1. Inexact method
  - Conjugate gradient
  - Stochastic gradient
- 2. Both require only Hessian-vector products

Newton-CG chooses a fixed sample S, applies CG to

$$q_k(p) = F(w_k) + \nabla F(w_k)^T p + \frac{1}{2} p^T \nabla^2 F_S(w_k) p$$

### Newton-SGI (stochastic gradient iteration)

If we apply the standard gradient method to

$$q_k(p) = F(w_k) + \nabla F(w_k)^T p + \frac{1}{2} p^T \nabla^2 F(w_k) p$$

we obtain the iteration

$$p_{k}^{i+1} = p_{k}^{i} - \nabla q_{k}(p_{k}^{i}) = (I - \nabla^{2} F(w_{k}))p_{k}^{i} - \nabla F(w_{k})$$

Consider instead the semi-stochastic gradient iteration:

1. Choose and index *j* at random; 2.  $p_k^{i+1} = (I - \nabla^2 F_j(w_k)) p_k^i - \nabla F(w_k)$  Change sample Hessian at each inner iteration

This method is implicit in Agarwal, Bullins, Hazan 2016

## Comparing Newton-CG and Newton-GD

Number of Hessian-vector products to achieve

$$\|w_{k+1} - w^*\| \le \frac{1}{2} \|w_k - w^*\| \qquad (*)$$

$$O((\hat{\kappa}_{l}^{\max})^{2}\hat{\kappa}_{l}\log(\hat{\kappa}_{l})\log(d)) \qquad \text{Newton-SGI}$$
$$O((\hat{\kappa}_{l}^{\max})^{2}\sqrt{\hat{\kappa}_{l}^{\max}}\log(\hat{\kappa}_{l}^{\max})) \qquad \text{Newton-CG}$$

Agarwal, Bullins and Hazan (2016) and Xu, Yang, Re, Roosta-Khorasani, Mahoney (2016) Byrd, Bollapragada, N, (2016) Decrease (\*) obtained at each step with probability 1-p Our results give convergence of the whole sequence in expectation Complexity bounds are very pessimistic, particularly for CG

# Final Remarks

- The search for effective optimization algorithms for machine learning is ongoing
- In spite of the total dominance of the SG method at present on very large scale applications
- ➢ SG does not parallelize well
- SG is a first order method affected by ill conditioning
- SG too noisy when high accuracy is desired
- A method that is noisy at the start and gradually becomes more accurate seems attractive
- Generalization properties are vital