

INTELLIGENT SURGICAL SCHEDULING

Narges Hosseini Kalyan Pasupathy Yariv Marmor Thomas Rohleder

Jeanne Huddleston Paul Huddleston

INFORMS Business Analytics & Operations Research 2015

Annual Patient Encounters

Total clinic patients: 1,260,000

Hospital admissions: 131,000

Hospital days: 608,000

Employees: > 60,000

Revenue*

Total revenue: \$9,421

Income : \$612

Benefactors: \$399

* In millions

St Mary's Campus, Mayo Clinic Hospital

The Practice Problem

- Surgeon variation in utilization rates
- Empty days (last minute cancellations)
- Fluctuating days with low and over utilization
- Surgeries past 11 pm unsafe days
 - Fatigue/burnout, higher likelihood of errors
- >Unnecessary hospital weekend days

≻Causes

- Duration of surgery is not estimated correctly
- > Surgeries are not assigned to a optimal day

Center for the SCIENCE of HEALTH CARE DEL

Perspectives to be considered

6

Practical Requirements

- Promote patient engagement in decision making
- Scheduling system that is clinically relevant and flexible
 - Respect surgeon autonomy
 - Informed decision making: Provide probability of overtime for the day and estimate end of the surgery day
 - Provide multiple options for scheduling spread over the 90 day horizon
- Optimize prime time OR utilization for all surgeons
- Eliminate surgical days with no surgeries
- Avoid weekend discharges of patients for initial nursing home placement
- Reserve enough capacity for long surgeries

Surgery Scheduling Analytics Approach

Descriptive Analytics

Prediction of Surgical Durations and Length of Hospital Stay

State of the Practice

Moving average of OR times modified by scheduler

Literature

- Distribution as random generator
- Surgeon/staff prediction of times
- Prediction models based on general factors
- Prediction of surgical times is studied based on ICD9 codes
 - ICD9 codes are not usually known at the time of scheduling

10

Center for the SCIENCE of HEALTH CARE DELIVE

ICD9 codes are design for financial purposes

Data Mining and Text Mining

- Spine surgeries highly variable
- General information such as age, gender, etc can not represent the duration of spine surgery
- Interaction with practice, survey, etc to identify initial set of variables
- Only general information such as age, gender, etc are stored as data fields
- Unstructured data, free text pre and post operative notes

Center for the SCIENCE of HEALTH CARE DEL

Methods of Prediction

Compared different prediction models

- Stepwise Regression
- Least Square Regression
- Classification
- Neural Network

Predictor	 RSquare	RASE	AAE
Stepwise	0.6375	1.2934	0.9296
Stepwise 2L	0.8168	0.9215	0.6842
Stepwise 3L	0.9284	0.5762	0.4064
Classification	0.6032	1.3517	0.9565
Neural Network	0.6674	1.2416	0.8783
LSQ	0.6396	1.2924	0.9305

Predictor	RSquare	RASE	AAE
Stepwise	0.5895	1.4464	1.0459
Stepwise 2L	0.3019	1.8902	1.1929
Stepwise 3L	0.0021	3.5715	1.9479
Classification	0.5459	1.5171	1.0397
Neural Network	0.5736	1.4762	1.0351
LSQ	0.5899	1.4488	1.0478

Calculation of Probabilities

> The distribution of surgical times are wide

► Using classification we categorize surgeries based on previously defined factors (13 categories each with different distribution, $f_1, f_2, ..., f_{13}$)

> The density function of sum of random variables is convolution of f_2, f_7

The convolution does not have close form in this case

Center for the SCIENCE of HEALTH CARE DEL

Calculation of Probabilities

- Fourier Transform (FT) is a transform that express a mathematical function of time as a function of frequency
- Theorem: Convolution in the time domain corresponds to multiplication in the frequency domain
- Use Discrete Fast Fourier Transform and its inverse as a numerical method to find density function
- Calculation of probabilities, over time and under time from that is straight forward

Scheduling Problem

Optimization based Template from Literature

- Patients are grouped (categorized) based on some common criteria
- The optimization model is solved for several times for historical based data (simulation)
- Rule1: if case has conditions a, b, and c (is of category 1), then schedule it in a slot with conditions I, and II ...

Rule 2: if case has conditions

Rule n: if case has

Changes in demand makes template invalid

• Re configuring template is expensive

Center for the SCIENCE of HEALTH CARE DELIV

 Surgeons do not always follow suggested times

Proposed Scheduling Algorithm

Sub-horizons guarantee possible solutions within different time windows

- Set a minimum number of ideal days per subhorizon
- Reward and penalty functions to evaluate different days
- Rank days based on: (reward penalty)

Center for the SCIENCE of HEALTH CARE DEL

Simulation

Screenshot: Personalized Scheduling

L John Hurt	12-345-678	A R	ochester, MN	i 25-Dec-1965	
Questionnaire					
Please answer all the questions carefully. They will	be used to determine t	he most optimum surgery da	ites.		
Is this a wound revision or washout or solely the removal of implants (without reinsertion)?	Yes	No No			
Is patient healthy?	Yes	No No			
Approach used during primary surgery?	Anterior	O Posterior	C Lateral	Thoracotomy	
Surgical Segments :	C1 C2 C3	C4 C5 C6 C7			
	T1 T2 T3	T4 T5 T6 T7	T8 T9 T10 T11	T12	
	L1 L2 L3	L4 L5 S1 S2	S3 S4 S5		
	Clear				
Please check all that apply :	Cancer	Decompression	Deformity	Fracture	
	Fusion	Iliac Grafting	Infection	Instrumentation	
	Revision	O-Arm and/or Na	wigation		
Additional procedure required? (discontiguous spine segment or approach)?	Yes	No No			
Height :	ft	in			
Weight :	lbs				
Discharge to Nursing Home?	Yes	No No			
Duration Modifier : (optional)	minutes				
	Submit				

Screenshot: "Green days" with probabilities

Implementation Process

- Data Extraction and Data Load
- >Dual entry
- Cases not included (e.g. brain surgery)
- Workflow
- Acceptance and Trust

Center for the SCIENCE of HEALTH CARE DELIVE

Before and After Implementation

Before

Measure	Before Project starts
Primetime OR utilization	47%
Days with No Surgery	33%
Days with Overtime	38%

After

Measure	After First Pilot
Primetime OR utilization	66%
Days with No Surgery	16%
Days with Overtime	28%

Impact and Summary

- Increased flexibility
- Increased OR utilization
- Reduced "no hitters"
- Reduced overtime
- Informed decisionmaking

Acknowledgements

- Kern Center for the Science of Health Care Delivery
- Department of Orthopedic Surgery and Neuro Surgery
- ►IT Programming Team
- INFORMS IAA Award Committee
- Coaches (Drs. Scott Grasman and Michael Katehakis)

Center for the SCIENCE of HEALTH CARE DELIN