Optimal shape and location of sensors or actuators in PDE models

Y. Privat, E. Trélat1, E. Zuazua

1Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France

SIAM Conference on Analysis of Partial Differential Equations, 2015
What is the best shape and placement of sensors?

- Reduce the cost of instruments.
- Maximize the efficiency of reconstruction and estimations.
The observed system may be described by:

- wave equation \[\partial_{tt}y = \triangle y\]
- Schrödinger equation \[i\partial_t y = \triangle y\]
- general parabolic equations \[\partial_t y = Ay\] (e.g., heat or Stokes equations)

in some domain \(\Omega\), with either Dirichlet, Neumann, mixed, or Robin boundary conditions.

For instance, when dealing with the heat equation:

What is the optimal shape and placement of a thermometer?
Waves propagating in a cavity:

\[
\begin{align*}
\partial_{tt} y - \Delta y &= 0 \\
y(t, \cdot)_{\partial\Omega} &= 0
\end{align*}
\]

Observable

\[
y(t, \cdot)_{|\omega}
\]

Observability inequality

The observability constant \(C_T(\omega) \) is the largest nonnegative constant such that

\[
\forall (y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega) \quad C_T(\omega) \| (y^0, y^1) \|^2_{L^2 \times H^{-1}} \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt
\]

The system is said observable on \([0, T]\) if \(C_T(\omega) > 0 \) (otherwise, \(C_T(\omega) = 0 \)).
Waves propagating in a cavity:

\[\partial_{tt} y - \Delta y = 0 \]
\[y(t, \cdot) |_{\partial \Omega} = 0 \]

Observable
\[y(t, \cdot) |_{\omega} \]

Observability inequality

The observability constant \(C_T(\omega) \) is the largest nonnegative constant such that

\[\forall (y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega) \quad C_T(\omega) \| (y^0, y^1) \|^2_{L^2 \times H^{-1}} \leq \int_0^T \int_{\omega} |y(t, x)|^2 \, dx \, dt \]

Bardos-Lebeau-Rauch (1992): Observability holds if the pair \((\omega, T)\) satisfies the Geometric Control Condition (GCC) in \(\Omega \):

Every ray of geometrical optics that propagates in \(\Omega \) and is reflected on its boundary \(\partial \Omega \) intersects \(\omega \) in time less than \(T \).
Waves propagating in a cavity:

\[\partial_{tt} y - \Delta y = 0 \]
\[y(t, \cdot)|_{\partial\Omega} = 0 \]

Observable
\[y(t, \cdot)|_{\omega} \]

Observability inequality

The observability constant \(C_T(\omega) \) is the largest nonnegative constant such that

\[
\forall (y^0, y^1) \in L^2(\Omega) \times H^{-1}(\Omega) \quad C_T(\omega)\|(y^0, y^1)\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_{\omega} |y(t, x)|^2 \, dx \, dt
\]

Q: What is the "best possible" subdomain \(\omega \) of fixed given measure? (say, \(|\omega| = L|\Omega| \) with \(0 < L < 1 \))

N.B.: we want to optimize not only the placement but also the shape of \(\omega \), over all possible measurable subsets. (they do not have a prescribed shape, they are not necessarily BV, etc)
Related problems

1) What is the "best domain" for achieving HUM optimal control?

\[y_{tt} - \Delta y = \chi_\omega u \]

2) What is the "best domain" domain for stabilization (with localized damping)?

\[y_{tt} - \Delta y = -k\chi_\omega y_t \]

Existing works by

- P. Hébrard, A. Henrot: theoretical and numerical results in 1D for optimal stabilization.
- A. Münch, P. Pedregal, F. Periago: numerical investigations (fixed initial data).
- S. Cox, P. Freitas, F. Fahroo, K. Ito, ...: variational formulations and numerics.
- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical investigations over a finite number of possible initial data.
- ...
The model

Observability inequality

\[\forall y \text{ solution} \quad C_T(\omega) \|(y(0, \cdot), \partial_t y(0, \cdot))\|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt \]

Let \(L \in (0, 1) \) and \(T > 0 \) fixed.

It is a priori natural to model the problem as:

\[
\sup_{\omega \subset \Omega \quad |\omega| = L |\Omega|} C_T(\omega)
\]

with

\[
C_T(\omega) = \inf \left\{ \frac{\int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt}{\|(y(0, \cdot), \partial_t y(0, \cdot))\|_{L^2 \times H^{-1}}^2} \mid (y(0, \cdot), \partial_t y(0, \cdot)) \in L^2(\Omega) \times H^{-1}(\Omega) \setminus \{(0, 0)\} \right\}
\]

BUT...
The model

Observability inequality

\[\forall y \text{ solution} \quad C_T(\omega) \| (y(0, \cdot), \partial_t y(0, \cdot)) \|_{L^2 \times H^{-1}}^2 \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt \]

Let \(L \in (0, 1) \) and \(T > 0 \) fixed.

It is \textit{a priori} natural to model the problem as:

\[\sup_{\omega \subset \Omega} \frac{C_T(\omega)}{|\omega| = L|\Omega|} \]

BUT:

1. Theoretical difficulty due to crossed terms in the spectral expansion (cf Ingham inequalities).

2. In practice: many experiments, many measures. This deterministic constant is \textit{pessimistic}: it gives an account for the \textit{worst case}.

\[\rightarrow \text{ optimize shape and location of sensors in average, over a large number of measurements} \]

\[\rightarrow \text{ define an \textit{averaged} observability inequality} \]
Randomized observability constant

Averaging over random initial data:

Randomized observability inequality (wave equation)

\[
C_{T,\text{rand}}(\omega) \|(y(0, \cdot), y_t(0, \cdot))\|_{L^2 \times H^{-1}}^2 \leq \mathbb{E}\left(\int_0^T \int_\omega |y_\nu(t, x)|^2 \, dx \, dt \right)
\]

where

\[
y_\nu(t, x) = \sum_{j=1}^{+\infty} \left(\beta_{1,j}^\nu a_j e^{i\lambda_j t} + \beta_{2,j}^\nu b_j e^{-i\lambda_j t} \right) \phi_j(x)
\]

with \(\beta_{1,j}^\nu, \beta_{2,j}^\nu\) i.i.d. random variables (e.g., Bernoulli, Gaussian) of mean 0

with \((\phi_j)_{j \in \mathbb{N}^*}\) Hilbert basis of eigenfunctions

Randomization
- generates a full measure set of initial data
- does not regularize

Optimal shape and location of sensors
Randomized observability constant

Theorem

\[C_{T,\text{rand}}(\chi_\omega) = T \inf_{j \in \mathbb{N}^*} \gamma_j \int_\omega \phi_j(x)^2 \, dx \]

with

\[\gamma_j = \begin{cases}
1/2 & \text{for the wave equation} \\
1 & \text{for the Schrödinger equation} \\
\frac{e^{2\lambda_j^2 T} - 1}{2\lambda_j^2} & \text{for the heat equation}
\end{cases} \]

with \((\phi_j)_{j \in \mathbb{N}^*}\) a fixed Hilbert basis of eigenfunctions of \(\triangle\)

Remark

There holds \(C_{T,\text{rand}}(\chi_\omega) \geq C_T(\chi_\omega) \).

For the wave equation, the randomized observability constant is a spectral quantity ignoring the rays’ contribution.

\(\mapsto\) spectral criterion = half of the truth!

There are examples where the inequality is strict:

- in 1D: \(\Omega = (0, \pi), \ T \neq k\pi\).
- in multi-D: \(\Omega\) stadium-shaped, \(\omega\) containing the wings.
Randomized observability constant

Theorem

\[\forall \omega \text{ measurable} \]

\[C_{T, \text{rand}}(\chi_\omega) = T \inf_{j \in \mathbb{N}^*} \gamma_j \int_\omega \phi_j(x)^2 \, dx \]

with

\[\gamma_j = \begin{cases}
1/2 & \text{for the wave equation} \\
1 & \text{for the Schrödinger equation} \\
\frac{e^{2\lambda_j^2 T} - 1}{2\lambda_j^2} & \text{for the heat equation}
\end{cases} \]

with \((\phi_j)_{j \in \mathbb{N}^*} \) a fixed Hilbert basis of eigenfunctions of \(\triangle \)

Conclusion: we model the problem as

\[\sup_{\omega \subseteq \Omega} \inf_{j \in \mathbb{N}^*} \gamma_j \int_{|\omega|=L|\Omega|} \phi_j(x)^2 \, dx \]
To solve the problem, we distinguish between:

- parabolic equations (e.g., heat, Stokes)
- wave or Schrödinger equations

Remarks

- requires some knowledge on the asymptotic behavior of ϕ_j^2
- $\mu_j = \phi_j^2 \, dx$ is a probability measure
 - \Rightarrow strong difference between $\gamma_j \sim e^{\lambda_j T}$ (parabolic) and $\gamma_j = 1$ (hyperbolic)
Parabolic equations
(e.g.: heat, Stokes, anomalous diffusions)

We assume that Ω is piecewise C^1

Theorem
There exists a unique optimal domain ω^*

- Quite difficult proof, requiring in particular: Hartung minimax theorem; fine lower estimates of ϕ_j^2 by J. Apraiz, L. Escauriaza, G. Wang, C. Zhang (JEMS 2014)
- Algorithmic construction of the best observation set ω^*: to be followed (further)
Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

\[
\sup_{\omega \subset \Omega} \left\{ \frac{\inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 \, dx}{|\omega|} \right\} = L
\]

Proof: 1) convexification (relaxation), 2) no-gap (not obvious because not lsc).

Main spectral assumption:

QUE (Quantum Unique Ergodicity): the whole sequence \(\phi_j^2 \, dx \rightharpoonup \frac{dx}{|\Omega|} \) vaguely.

true in 1D, but in multi-D?
Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

\[
\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 \, dx = L
\]

Relationship to quantum chaos theory:

what are the possible (weak) limits of the probability measures \(\mu_j = \phi_j^2 \, dx \)? (quantum limits, or semi-classical measures)

- See also Shnirelman theorem: ergodicity implies Quantum Ergodicity (QE; but possible gap to QUE!)
- If QUE fails, we may have scars
- QUE conjecture (negative curvature)
Wave and Schrödinger equations

Optimal value

Under appropriate spectral assumptions:

$$\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_\omega \phi_j(x)^2 \, dx = L$$

Remark: The above result holds true as well in the disk. Hence the spectral assumptions are not sharp.

(proof: requires the knowledge of all quantum limits in the disk, Privat Hillairet Trélat)

$$\mu_{jk} \rightharpoonup \delta_{r=1}$$

(this is one QL: whispering galleries)
Wave and Schrödinger equations

Optimal value

Under appropriate \textit{spectral assumptions}:

\[
\sup_{\omega \subset \Omega} \inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 \, dx = L
\]

\begin{itemize}
 \item **Supremum reached?** Open problem in general.
 \begin{itemize}
 \item in 1D: reached \iff $L = 1/2$ (infinite number of optimal sets)
 \item in 2D square: reached over Cartesian products \iff $L \in \{1/4, \, 1/2, \, 3/4\}$
 \end{itemize}
 \end{itemize}

Conjecture: Not reached for generic domains Ω and generic values of L.

Construction of a \textit{maximizing sequence} (by a kind of homogenization)
Following Hébrard-Henrot (SICON 2005), we consider the finite-dimensional spectral approximation:

\[
\sup_{\omega \subset \Omega} \frac{\min_{1 \leq j \leq N} \gamma_j \int_\omega \phi_j^2(x) \, dx}{|\omega| = L|\Omega|}
\]

Theorem

The problem has a unique solution \(\omega^N \).

Moreover, \(\omega^N \) is semi-analytic and thus has a finite number of connected components.
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N+1$ first modes.

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:
(satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

$$\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^{N_0} = \omega^*$$

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.

$\Omega = (0, \pi)^2$ \hspace{1cm} $L = 0.2$

4, 25, 100, 500 eigenmodes
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N+1$ first modes.

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:

(satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

$$\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^N_0 = \omega^*$$

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.

$\Omega =$ unit disk $\quad L = 0.2$

1, 25, 100, 400 eigenmodes
Wave and Schrödinger equations

The complexity of ω^N is increasing with N.

Spillover phenomenon: the best domain ω^N for the N first modes is the worst possible for the $N+1$ first modes.

Parabolic equations

(e.g., heat, Stokes, anomalous diffusions)

Under a slight spectral assumption:

(satisfied, e.g., by $(-\Delta)^\alpha$ with $\alpha > 1/2$)

The sequence of optimal sets ω^N is stationary:

$$\exists N_0 \mid \forall N \geq N_0 \quad \omega^N = \omega^{N_0} = \omega^*$$

with ω^* the optimal set for all modes.

In particular, ω^* is semi-analytic and thus has a finite number of connected components.

\Rightarrow no fractal set!

$$\Omega = (0, \pi)^2$$

1, 4, 9, 16, 25, 36 eigenmodes

$L = 0.2$, $T = 0.05$

\Rightarrow optimal thermometer in a square

E. Trélat

Optimal shape and location of sensors
Conclusion and perspectives

- Same kind of analysis for the **optimal design of the control domain**.
- Intimate relations between domain optimization and quantum chaos (**quantum ergodicity properties**).
- Optimal design for **boundary observability** (P. Jounieaux’ PhD):

\[
\sup_{|\omega|=L|\partial \Omega|} \inf_{j \in \mathbb{N}^*} \gamma_j \int_{\Omega} \frac{1}{\lambda_j} \left(\frac{\partial \phi_j}{\partial \nu} \right)^2 \, d\mathcal{H}^{n-1}
\]

- Strategies to **avoid spillover**?
- **Discretization issues**: do the numerical optimal designs converge to the continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua,

What can be said for the classical (deterministic) observability constant?

A result for the wave observability constant:
(Humbert Privat Trélat, ongoing)

$$\lim_{T \to +\infty} \frac{C_T(\omega)}{T} = \frac{1}{2} \min \left(\inf_{j \in \mathbb{N}^*} \int_\omega \phi_j^2 \, dx, \lim_{T \to +\infty} \inf_{\gamma \text{ ray}} \frac{1}{T} \int_0^T \chi_\omega(\gamma(t)) \, dt \right)$$

Two quantities:
- spectral
- geometric (rays)

↓
randomized obs. constant
Modeling Solving

E. Trélat

Optimal shape and location of sensors
Remark: another way of arriving at the criterion (wave equation)

Averaging in time:
Time asymptotic observability inequality:

\[C_\infty(\chi_\omega) \| (y(0, \cdot), y_t(0, \cdot)) \|_{L^2 \times H^{-1}}^2 \leq \lim_{T \to +\infty} \frac{1}{T} \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt, \]

with

\[C_\infty(\chi_\omega) = \inf \left\{ \lim_{T \to +\infty} \frac{1}{T} \frac{\int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt}{\| (y(0, \cdot), y_t(0, \cdot)) \|_{L^2 \times H^{-1}}^2} \mid (y(0, \cdot), y_t(0, \cdot)) \in L^2 \times H^{-1} \setminus \{(0, 0)\} \right\}. \]

Theorem

If the eigenvalues of \(\triangle g \) are simple then

\[C_\infty(\chi_\omega) = \frac{1}{2} \inf_{j \in \mathbb{N}^*} \int_\omega \phi_j(x)^2 \, dx = \frac{1}{2} J(\chi_\omega). \]

Remarks

- \[C_\infty(\chi_\omega) \leq \frac{1}{2} \inf_{j \in \mathbb{N}^*} \int_\omega \phi_j(x)^2 \, dx. \]
- \[\limsup_{T \to +\infty} \frac{C_T(\chi_\omega)}{T} \leq C_\infty(\chi_\omega). \] There are examples where the inequality is strict.
A remark for fixed initial data

If we maximize $\omega \mapsto \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt$ with **fixed initial data**, then, using a decreasing rearrangement argument:

There always exists (at least) one optimal set ω. The regularity of ω depends on the initial data: it may be a Cantor set of positive measure, even for C^∞ data.

→ In our model, we consider an infimum over all initial data.
A remark on the class of subdomains

Let $A > 0$ fixed. If we restrict the search to

$$\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } P_{\Omega}(\omega) \leq A \}$$

(perimeter)

or

$$\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } \| \chi_{\omega} \|_{BV(\Omega)} \leq A \}$$

(total variation)

or

$$\{ \omega \subset \Omega \mid |\omega| = L|\Omega| \text{ and } \omega \text{ satisfies the } 1/A\text{-cone property} \}$$

or

ω ranges over some finite-dimensional (or ”compact”) prescribed set...

then there always exists (at least) one optimal set ω.

→ but then...
- the complexity of ω may increase with A
- we want to know if there is a ”very best” set (over all possible measurable)
1. Existence of a maximizer

Ensured if \mathcal{U}_L is replaced with any of the following choices:

- $\mathcal{V}_L = \{\chi_\omega \in \mathcal{U}_L | P_\Omega(\omega) \leq A\}$ (perimeter)
- $\mathcal{V}_L = \{\chi_\omega \in \mathcal{U}_L | \|\chi_\omega\|_{BV(\Omega)} \leq A\}$ (total variation)
- $\mathcal{V}_L = \{\chi_\omega \in \mathcal{U}_L | \omega \text{ satisfies the } 1/A\text{-cone property}\}$

where $A > 0$ is fixed.
2. Weighted observability inequality

\[
C_{T, \sigma}(\chi_\omega) \left(\| (y^0, y^1) \|_{L^2 \times H^{-1}}^2 + \sigma \| y^0 \|_{H^{-1}}^2 \right) \leq \int_0^T \int_\omega |y(t, x)|^2 \, dx \, dt,
\]

where \(\sigma \geq 0 \): weight.

Note that \(C_{T, \sigma}(\chi_\omega) \leq C_T(\chi_\omega) \).

Randomization \(\Rightarrow \) \(2 \, C_{T, \sigma, \text{rand}}(\chi_\omega) = TJ_\sigma(\chi_\omega) \), where

\[
J_\sigma(\chi_\omega) = \inf_{j \in \mathbb{N}^*} \sigma_j \int_\omega \phi_j(x)^2 \, dx,
\]

with \(\sigma_j = \frac{\lambda_j^2}{\sigma + \lambda_j^2} \).
Remedies (wave and Schrödinger equations)

Theorem

Assume that L^∞-QUE holds. If $\sigma_1 < L < 1$ then there exists $N \in \mathbb{N}^*$ such that

$$\sup_{\chi_\omega \in \mathcal{U}_L} \inf_{j \in \mathbb{N}^*} \sigma_j \int_\omega \phi_j^2 = \max_{\chi_\omega \in \mathcal{U}_L} \inf_{1 \leq j \leq n} \sigma_j \int_\omega \phi_j^2 \leq \sigma_1 < L,$$

for every $n \geq N$. In particular there is a unique solution χ_{ω^N}. Moreover if M is analytic then ω^N is semi-analytic and has a finite number of connected components.

- The condition $\sigma_1 < L < 1$ seems optimal (see numerical simulations).
- This result holds as well in any torus, or in the Euclidean n-dimensional square for Dirichlet or mixed Dirichlet-Neumann conditions.
Modeling Solving

\[L = 0.2 \]

\[L = 0.4 \]

\[L = 0.6 \]

\[L = 0.9 \]
An additional remark

Anomalous diffusion equations, Dirichlet: \(\partial_t y + (-\Delta)^\alpha y = 0 \) \((\alpha > 0 \text{ arbitrary})\)
with a surprising result:

In the square \(\Omega = (0, \pi)^2 \), with the usual basis (products of sine): the optimal domain \(\omega^* \) has a finite number of connected components, \(\forall \alpha > 0 \).

In the disk \(\Omega = \{ x \in \mathbb{R}^2 \mid \| x \| < 1 \} \), with the usual basis (Bessel functions), the optimal domain \(\omega^* \) is radial, and
- \(\alpha > 1/2 \implies \omega^* = \text{finite number of concentric rings (and } d(\omega, \partial \Omega) > 0) \)
- \(\alpha < 1/2 \implies \omega^* = \text{infinite number of concentric rings accumulating at } \partial \Omega! \)
 (or \(\alpha = 1/2 \) and \(T \) small enough)

The proof is long and very technical. It uses in particular the knowledge of quantum limits in the disk.

(L. Hillairet, Y. Privat, E.Trélat)
$\Omega = \text{unit disk}$
1, 4, 9, 16, 25, 36 eigenmodes

$L = 0.2, \ T = 0.05, \ \alpha = 1$
\[\Omega = \text{unit disk} \quad \text{1, 4, 25, 100, 144, 225 eigenmodes} \]

\[L = 0.2, \ T = 0.05, \ \alpha = 0.15 \]
Comparison

<table>
<thead>
<tr>
<th></th>
<th>square</th>
<th>disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>wave or Schrödinger</td>
<td>relaxed solution $a = L$</td>
<td>relaxed solution $a = L$</td>
</tr>
<tr>
<td></td>
<td>$\exists \omega$ for $L \in {\frac{1}{4}, \frac{1}{2}, \frac{3}{4}}$</td>
<td>$\exists \omega$ for $L \in {\frac{1}{4}, \frac{1}{2}, \frac{3}{4}}$</td>
</tr>
<tr>
<td></td>
<td>$\not\exists$ otherwise (conjecture)</td>
<td>$\not\exists$ otherwise (conjecture)</td>
</tr>
<tr>
<td>diffusion $(-\Delta)^\alpha$</td>
<td>$\exists! \omega \ \forall L \ \forall \alpha > 0$</td>
<td>$\exists! \omega$ (radial) $\forall L \ \forall \alpha > 0$</td>
</tr>
<tr>
<td></td>
<td>$#c.c.(\omega) < +\infty$ if $\alpha > 1/2$ then $#c.c.(\omega) < +\infty$</td>
<td>if $\alpha < 1/2$ then $#c.c.(\omega) = +\infty$</td>
</tr>
</tbody>
</table>