Active Multi-task Learning via Bandits

Meng Fang and Dacheng Tao
University of Technology, Sydney
Outline

• Motivation
• Connection between Active learning and Bandit
• Algorithm
• Experiments
• Conclusion
Motivation

- Labeling is expensive. The most time-consuming and costly part is usually the collecting of data.
Motivation

- Labeling instances for one task can also affect the other tasks especially when the task has a small number of labeled data.
Related work

- EER: expected error reduction
- VIO: summarize uncertainties for each task
Related work

• EER: expected error reduction
• VIO: summarize uncertainties for each task
• Ours: use bandit framework
Active learning vs. Multi-armed bandit
Active learning

- Select an instance from a pool
- Query the label of the selected instance
- Train a new classifier based on new labeled data
- The goal: obtain a classifier with good performance
Bandit – Multi-armed bandit

- Select an arm from a set of arms
- Get the payoff of the selected arm
- Update the historical payoff records for each arm
- The goal: obtain the arm with high payoffs
The similar things between active learning and multi-armed bandits

<table>
<thead>
<tr>
<th>Active learning</th>
<th>Multi-armed bandits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis (classifier)</td>
<td>Arm</td>
</tr>
<tr>
<td>Performance</td>
<td>Payoff</td>
</tr>
<tr>
<td>Make the query for a</td>
<td>Pull the arm and obtain</td>
</tr>
<tr>
<td>instance and get the</td>
<td>the payoff</td>
</tr>
<tr>
<td>performance based on the new</td>
<td></td>
</tr>
<tr>
<td>labeled train dataset</td>
<td></td>
</tr>
</tbody>
</table>
Under the bandit framework

- We formalize the active learning algorithm for multi-task learning under the bandit framework.
- Hypothesis - arm
- Risk - payoff
- Trade-off between exploration and exploitation: confidence bound of hypothesis
Trade-off: confidence of hypothesis

- Confidence: distance to the ground truth.
Algorithm

• Risk and confidence
• Trade-off between risk and confidence
• Two goals: lower risk and lower confidence
• Provide an implementation of our approach based on multi-task learning with trace-norm regularization method.
Arm - hypothesis

- In the multi-task learning, we consider the hypothesis as the arm.
- Given a dataset, we solve the optimization problem:

\[h = \arg \min_{h \in H} \hat{R}(h) + \mu \|W\| \]

*
Payoff - Risk

• The risk

\[R(h) = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(x,y) \sim \mu_m} [\ell(h(x), y)] \]

• Average empirical risk.
Confidence bound

- Confidence bound

\[CB = \sqrt{\frac{ln(1/\sigma)}{2nM}} + 2LB \left(\sqrt{\frac{\|\hat{C}\|_\infty}{n}} + \sqrt{\frac{2(ln(nM) + 1)}{nM}} \right) \]

- It equates the excess risk of multi-task learning algorithm with trace-norm regularization.
Two criterions

- Consider both the risk and the corresponding confidence, we want to find a hypothesis which can be

\[h = \arg \min_{h \in H} R(h) + C(h) \]

- Then we want to minimize both the risk and the upper confidence bound.
Trade-off between risk and confidence

• For the multi-task learning problem, firstly, we must learn a large enough candidate set to contain hypothesis set with low risk.

• Then we should also learn a small enough hypothesis set that we can find such hypothesis close to true hypothesis.
Active learning algorithm

Update labeled data

Make the query

Compute risk and confidence
Experiments

• We evaluate our algorithm on a synthetic dataset and three real multi-task datasets: Restaurant & Consumer dataset, Dermatology dataset and School dataset.
Baselines:

- ERR: expected error reduction based method.
Baselines:

- VIO value of information algorithm, which summarizes the uncertainty of each task using traditional uncertainty strategy, defined as

\[VOI(Y, x) = \sum_y p(Y = y|x)R(p, Y = y, x) \]

- where \(R \) is the rewards function and we use \(R(p, Y = y, x) = -\log p(Y = y|x) \). This strategy is to select the instance which has the most uncertainty information over all tasks;
Baselines:

- Random: passive learning algorithm, which randomly selects instances from dataset.
Synthetic data

- Performance comparison:
Restaurant & consumer data

- Performance comparison
Dermatology data

- Performance comparison
School data

• Performance comparison
Conclusion

• Propose a new active learning framework for multi-task learning, named active multi-task learning via bandits.
• Consider the trade-off between minimizing the risk and improving the confidence bounds for the hypothesis.
• Provide an implementation of our approach based on multi-task learning with trace-norm regularization method.
Q & A

• Thanks.

• Finding a job in academia or industry.

• Email: Meng.Fang@student.uts.edu.au