An Evolving Introduction to Game Theory

Rob Root & Chris Ruebeck Depts of Mathematics & Economics Lafayette College Easton, Pennsylvania

> SIAM Conference On Education in Applied Mathematics Philadelphia, Pennsylvania — September 30, 2016

Game Theory for Sophomores +

- Cross-listed: Math & Econ
- Applied Statistics (AP-level) prerequisite
- Game theory text popular in economics
 - contains biology-based material
- + instructor-authored
 - beginning (~1 week)
 - end (~2 weeks) of the class

Not your usual sophomorelevel math class

- Diverse audience, including as regards math background
 - Neurosci, never taken Econ
 - Math, unfazed by [simple math]
 - Econ, daunted by the math: Didn't expect so much
- Previous game theory experience: two-by-two matrices ... need to quickly get to the more mathematical treatment
- Applications dominate theory, but theory is vibrant and central
- Material amenable to innovative pedagogy and challenging the breadth of student aptitude

Keep it Simple!

- Use only discrete probability and discrete generations to avoid most Calculus (except geometric series)
- Need expected value, variance and covariance to convey Price equation
- Elementary presentations by McElreath & Boyd and Bowles & Gintis instrumental but needed cleaning

MATHEMATICAL MODELS OF SOCIAL EVOLUTION

A GUIDE FOR THE PERPLEXED

RICHARD MCELREATH . ROBERT BOYD

What is covered? I. The elements

- Evolution: Natural Selection & Speciation
- Rationality vs Natural Selection
- Iterated Deletion of Strictly Dominated Strategies
- Pure/Mixed Nash Equilibrium
- Backward Induction & Subgame Perfection
- Imperfect Information

What is covered? II. Evolutionary Games

- Repeated Games: Partial Optimality for Nash Equils
- Games in Institutions with Indefinite Lives
- Evolutionarily Stable Strategies & Replicator Dynamic
- Positive Assortment & Hamilton's Rule
- Multilevel Selection and Price's Equation

COURSE GUIDELINE

Chapter	Core	Broad Social Science	Private Information	Repeated Interaction	Biology	Simple	Advanced
1: Introduction to Strategic Reasoning	~	~	~	~	~	~	~
2: Building a Model of a Strategic Situation	~	~	~	~	~	~	~
3: Eliminating the Impossible: Solving a Game when Rationality Is Common Knowledge	~	~	~	~	~	~	~
4: Stable Play: Nash Equilibria in Discrete Games with Two or Three Players	~	~	~	~	~	~	~
5: Stable Play: Nash Equilibria in Discrete <i>n</i> -Player Games		~					~
6: Stable Play: Nash Equilibria in Continuous Games							~
7: Keep 'Em Guessing: Randomized Strategies		~	~		~		~
8: Taking Turns: Sequential Games with Perfect Information	~	~	~	~	~	~	~
9: Taking Turns in the Dark: Sequential Games with Imperfect Information	~	~	~	~	~	~	~
10: I Know Something You Don't Know: Games with Private Information		~	~				
11: What You Do Tells Me Who							

in Discrete <i>n</i> -Player Games		~					 ✓
6: Stable Play: Nash Equilibria in Continuous Games							~
7: Keep 'Em Guessing: Randomized Strategies		~	~				~
8: Taking Turns: Sequential Games with Perfect Information	~	~	~	~	~	~	~
9: Taking Turns in the Dark: Sequential Games with Imperfect Information	~	~	~	~	~	~	~
10: I Know Something You Don't Know: Games with Private Information		~	~				
11: What You Do Tells Me Who You Are: Signaling Games		~	~				
12: Lies and the Lying Liars That Tell Them: Cheap-Talk Games			~				
13: Playing Forever: Repeated Interaction with Infinitely Lived Players		~		~	~	~	
14: Cooperation and Reputation: Applications of Repeated Interaction with Infinitely Lived Players		~		~	14.3	~	
15: Interaction in Infinitely Lived Institutions				~			
16: Evolutionary Game Theory and Biology: Evolutionarily Stable Strategies					~		
17: Evolutionary Game Theory and Biology: Replicator Dynamics				~	-		

Evolution and the Mechanisms of **Decision Making**

Conviolited Material

LEE ALAN DUGATKIN

The Altruism

Copyrighted Mater

Playing For Real

A Cooperative Species

HUMAN RECIPROCITY AND ITS EVOLUTION

DRY

VOLUTIONARY

Moral Sentiments

The Founda

edited by Herbert Gintis

tobert Boyd

and Material Interests

COEVOLUTION

GENES

CULTURE

AND

Supplement **Main Thread** with Student **Presentations**

- Students from wide variety of majors
- Following their interests results in great breadth of presentations
- Variation in sophistication allows strong math students a chance to exercise
- Students generally enjoy presentations of peers
- Change of pace especially valued by students less comfortable with math

Useful pedagogy: BYOD "Clickers"

- Each lecture presentation incorporates a few questions that students respond to either using clickers or phones/web browsers (PollEverywhere)
- Particularly helpful for reinforcing concepts vs techniques
- Easier to incorporate than quizzes, with faster feedback and reinforcement of ideas immediately after introduction

What is covered? I. The elements

- Evolution: Natural Selection & Speciation
- Rationality vs Natural Selection

 Rationality & Common Knowledge are simple assumptions that paper over complex behavior

Useful pedagogy: "Clickers"

Evolution is

Creationism is

Response options definitely true. probably true. probably false. **definitely false.** I have no opinion.

With which of these positions do you think Americans are more familiar?

Response options	Count
Evolution	4
Creationism	8
Equally familiar	7

Useful pedagogy: BYOD "Clickers"

Which games have unique (pure-strategy) equilibria?

Response options Prisoners' Dilemma Battle of the Sexes Matching Pennies Crispy/Sweet None of the above

- How many children would you like to have?
- How many children are in your family?

What is covered? I. The elements

- Rationality & Common Knowledge are simple assumptions that paper over complex behavior
- Iterated Deletion of Strictly Dominated Strategies
- Pure/Mixed Nash Equilibrium
- Backward Induction & Subgame Perfection
- Imperfect Information

COURSE GUIDELINE

Chapter	Core	Broad Social Science	Private Information	Repeated Interaction	Biology	
1: Introduction to Strategic Reasoning	~				~	
2: Building a Model of a Strategic Situation	~				~	
3: Eliminating the Impossible: Solving a Game when Rationality Is Common Knowledge	7				~	
4: Stable Play: Nash Equilibria in Discrete Games with Two or Three Players	7			~	~	
5: Stable Play: Nash Equilibria in Discrete <i>n</i> -Player Games		~				

Boxed Pigs

		La	arge pig
		Press lever	Wait at dispenser
Small nin	Press lever	1,5	<u> </u>
Small pig	Wait at dispenser	4,4	<mark>0</mark> ,0

Boxed Pigs

- Check out Harrington's language!
 "How does [the] outcome <u>emerge</u>?"
 - We'll see this language when considering <u>complexity</u>
 - Similar to evolution, but more often in **population** behavior

in continuous damos					
7: Keep 'Em Guessing: Randomized Strategies					~
8: Taking Turns: Sequential Games with Perfect Information	~				~
9: Taking Turns in the Dark: Sequential Games with Imperfect Information	~	~	~	~	~

Bkwds Ind'n ... Really?

• Centipede game (Chain-store paradox)

1	2	2 1	2	2 1	1 2	2	25.60
	Leave	Leave	Leave	Leave	Leave	Leave	6.40
Grab (1%)	Grab (6%)	Grab (21%)	Grab (53%)	Grab (73%)	Grab (85%)		
Player 1 0.4	40 0.2	20 1.0	60 0.8	30 6.4	40 3.	.20	
Player 2 0.	10 0.8	80 0.4	40 3.2	20 1.0	60 12	.80	

- Experimental evidence in parentheses
- Sure, it *does* work, to a degree.
- Segue: At node 4, should assumptions change?

Mixed Strategy & Expectation

Probability *p* defines a mixed strategy for officer, and *d* defines dealer's mixed strategy.

Probabilities Drug Dealer

Payoffs

Drug dealer

cer		Street Corner	Park	er		Street corner	Park
)ffi	Street Corner	$p \bullet d$ (1-n)•d	$p \bullet (1-d)$ $(1-n) \bullet (1-d)$	ffic	Street corner	80,20	<mark>0</mark> ,100
\bigcirc		(1 p) * u	(1 p)*(1 u)	O	Park	10,90	<mark>60</mark> ,40

 $V_{\text{Officer}} = p \cdot d \cdot 80 + (1-p) \cdot d \cdot 10 + p \cdot (1-d) \cdot 0 + (1-p) \cdot (1-d) \cdot 60$ $V_{\text{Dealer}} = p \cdot d \cdot 20 + (1-p) \cdot d \cdot 90 + p \cdot (1-d) \cdot 100 + (1-p) \cdot (1-d) \cdot 40$

vert axis: payoff from each pure strategy

d axis: dealer's likelihood of street $V_{PO}(0,d) = 60 - 50d$

 $V_{PO}(1,d) = 80d$

d axis: dealer's likelihood of street

$$V_{PO}(0,d) = 60 - 50d$$

 $V_{PO}(1,d) = 80d$

 $V_{\text{Officer}} = 60 - 60p - 50d + 130pd$

$$V_{\text{Officer}} = 60 - 60p - 50d + 130pd$$

Now, all of the officer's mixed strategies

 $V_{\text{Officer}} = 60 - 60p - 50d + 130pd$

Now, all of the officer's mixed strategies

 $V_{\text{Officer}} = 60 - 60p - 50d + 130pd$

Best Reply Strategy

13: Playing Forever: Repeated Interaction with Infinitely Lived Players	~	~	~
14: Cooperation and Reputation: Applications of Repeated Interaction with Infinitely Lived Players			14.3
15: Interaction in Infinitely Lived Institutions			
16: Evolutionary Game Theory and Biology: Evolutionarily Stable Strategies			~
17: Evolutionary Game Theory and Biology: Replicator Dynamics			~

Example: Vampire Bats

- Vampire bats share food (blood) with unrelated adults with whom they roost
- Bats starve to death after 60 hours of not eating
- Primarily among females, though males rarely will share with juveniles
- Probability of sharing is correlated with history of reciprocal sharing

Vampire Bat Stage Game

TABLE 14.2	2 Payoffs of	Payoffs of Vampire Bats			
Bat	Sharing	No Sharing			
Fed bat	8	10			
Hungry bat	4	-1			

Bats discount the future at factor δ , succeed in feeding on a day with probability *s*

This bat has fed $V = s(10s + 8(1 - s)) + (1 - s)(4s - 1(1 - s)) + \delta V$

The other bat has fed The other bat has not fed

Vampire Bat Stage Game

TABLE 14.2	2 Payoffs of	Vampire Bats
Bat	Sharing	No Sharing
Fed bat	8	10
Hungry bat	4	-1

Bats discount the future at factor δ , succeed in feeding on a day with probability *s*

$$V = s(10s + 8(1 - s)) + (1 - s)(4s - 1(1 - s)) + \delta V$$

$$V = \frac{-3s^2 + 14s - 1}{1 - \delta}$$
 Deviation: $10s - 1(1 - s) = 11s - 1$

$$8 + \delta \frac{-3s^2 + 14s - 1}{1 - \delta} \ge 10 + \delta \frac{11s - 1}{1 - \delta}$$

Cooperation condition

Evolutionary game theory

Game Theory without the "rational" model

TABLE 16.1 PARALLEL CONCEPTS IN RATIONAL AND EVOLUTIONARY GAME THEORY				
Rational Game Theory	Evolutionary Game Theory			
Set of players	Population from which the set of players is drawn			
Payoff: measure of well-being	Fitness: measure of reproductive success			
Strategy is chosen by a player	Strategy is inherited by a player and "chosen" by natural selection			
Equilibrium: no player can do better	Equilibrium: no small mutation in the population can survive			

Evolutionary game theory

Game Theory without the "rational" model

TABLE 16.1 PARALLEL CONCEPTS IN RATIONAL AND EVOLUTIONARY GAME THEORY				
Rational Game Theory	Evolutionary Game Theory			
Set of players	Population from which the set of players is drawn			
Payoff: measure of well-being	Fitness: measure of reproductive success			
Strategy is chosen by a player	Strategy is inherited by a player and "chosen" by natural selection			
Equilibrium: no player can do better	Equilibrium: no small mutation in the population can survive			

Rationality

Evolutionary game theory

Game Theory without the "rational" model

TABLE 16.1 PARALLEL CONCEPTS IN RATIONAL AND EVOLUTIONARY GAME THEORY				
Evolutionary Game Theory				
Population from which the set of players is drawn				
Fitness: measure of reproductive success				
Strategy is inherited by a player and "chosen" by natural selection				
Equilibrium: no small mutation in the population can survive				

Rationality

Natural Selection

Rock-Paper-Scissor Lizards

Lizards whose territorial strategies mimic RPS Lizard 2

		Blue	Orange	Yellow
	Blue	<mark>0</mark> ,0	-1,1	1,-1
Lizard 1	Orange	1,—1	<mark>0</mark> ,0	-1,1
	Yellow	-1,1	1,-1	<mark>0</mark> ,0

a.k.a. The Fashion Game

RPS-Lizards & ESS

- There is no pure strategy Nash Eq (Why?), and so no pure strategy ESS, either
- The mixed strategy Nash eq *p* has *F*(*p*, *p*) = *F*(*q*, *p*) for any other strategy *q* (as it must by indifference)
- However, F(p, q) = 0 for any strategy q, and any strategy has F(q, q) = 0, as well. Thus F(p, q) = F(q, q), and p cannot be a mild (or strong) ESS.

Some Games Have No Evolutionary Stable Strat!

Mathematicians like problems that are "well-posed:"

- 1) Solution exists
- 2) Solution is unique

3) Solution changes only a little when the conditions of the problem change a little

... (Evolutionary) Game Theory problems are rarely "well-posed"—because that's how life is!

Two Population ESSes

• ESS can make sense even analyzing a nonsymmetric game. Consider BoS ("Battle of the Sexes" or "Boxing or the Symphony"): High Brow

		Boxing	Symphony
Pugilist	Boxing	3, 2	0, 0
	Symphony	0, 0	2, 3

2 populations: pugilists and high brows. Can we still have an ESS?

Rest points, stability, attractors

- Top of the hill versus the bottom
- nudge away

Best Response for BoS

• Best-response curves for Pugilist and High-Brow:

Not your usual sophomorelevel math class

- Diverse audience, including as regards math background
 - Neurosci, never taken Econ
 - Math, unfazed by [simple math]
 - Econ, daunted by the math: Didn't expect so much
- Previous game theory experience: two-by-two matrices ... need to quickly get to the more mathematical treatment
- Applications dominate theory, but theory is vibrant and central
- Material amenable to innovative pedagogy and challenging the breadth of student aptitude