Simulation Approach for Aircraft Spare Engines & Engine Parts Planning

Operations Research & Advanced Analytics

2015 INFORMS Conference on Business Analytics & Operations Research
Outline

• Background

• Problem Description
 • Spare Engines
 • Engine Parts ("Shop Pool")

• Approach

• Case Studies

• Impact to AA

• Conclusions
American Airlines

Largest airline in the world

More than 1000 aircraft

More than 500,000 bags per day

More than 300,000 passengers per day
Operations Research & Advanced Analytics Group at AA

• Internal consulting and decision support for business units:
 • Technical Operations (Tech Ops), Revenue Management, Network Planning, Airports and Customer Service

• 36 practitioners from more than 12 countries, 6 continents, 20 languages

• 60+ advanced degrees in Operations Research or equivalent

• 20 patents and 75+ journal articles
Maintenance Operations in American Airlines

• Critical in operations support
 • Reliability of aircraft
 • Utilization of aircraft
• Multiple bases
 • Tulsa, OK
 • Charlotte, NC
 • Dallas, TX
• Different capabilities
 • Engines
 • Landing gear
 • Avionics systems
 • Full aircraft overhaul
• OR consulting services
 • Inventory & supply chain
 • Line maintenance
 • Aircraft overhaul
 • Reliability & asset planning
Spare Engines & Engine Parts Planning

- Engines and parts are high cost assets

- Significant savings can be obtained from good planning
Spare Engines Planning

Critical Process

• Operationally
 • Engines require periodic overhaul
 • Spare engines required to cover the operation during overhaul

• Financially

 Boeing MD80 – JT8D Engine
 $1M

 Boeing 737 – CFM56 Engine
 $13M

 Boeing 777-200 – Trent Engine
 $35M

Boeing 737 Fleet:
250+ Planes and increasing… requiring $180M in spare engines
Engine Parts Planning

• The engine repair process is complex
 • Many sources of variability and uncertainty

• Complex part repair process
 • Scrapping
 • Cannibalization or borrowing of parts from other engines
 • Engine harvesting

• Accurate engine parts planning (Shop Pool)
 • Reduce engine repair time & repair time variability
 • Reduce spare engine inventory ownership

• Engine parts can also be very expensive: shop pool investments range above $70M
Spare Engines: Removal Operations and Replacement Operations

Available Spare Inventory

Out-of-Service Aircraft (OTS)

Send for Repair

Engine removal

Wait for new Spare to Arrive…

$
Spare Engines: Removal and Replacement Operations

Financially, it is beneficial to have the right amount of spares without overstocking!

Available Spare Inventory
Request new spare

Send for Repair

Engine removal

$
Engine Removal, Disassembling, Piece-Part Repair
Engine Repair Programs

- Engines are repaired under different repair programs: Light & Heavy
- Opportunities for harvesting are considered in some cases
- Heavy repairs → longer turn-times and are more expensive (every 8-15 years)
- Process can include capacity constraints, scrapping procedures, and borrowing of parts
Engine Repair Process

General Engine Repair Process

A typical process map for engine overhaul

Some Parts are sent out for external repair

TAT Target (collecting parts for assembly)
Engine Parts Repair Process: Piece-Part Repair, Assembling

Part repair times can be highly variable...

- Purchase new part...
- Purchase new part...
- Purchase new part...
- Scrapped part...

Use part from Shop Pool!

Borrowed Parts from Other Engines

Part repair not completed by time of rebuilding engine!
Objective

To determine the minimum number of spare engines and spare engine parts to support the flying schedule
Approach

• Closed-Form development
 • No mathematical model or formula is known for our scenario
 • Multiple sources of variability
 • General demand and repair distributions
 • We derived and solved a basic model with infinite repair capacity (paper to be submitted)
 • Limitations in the analytic approach led to simulation

• Simulation-based approach
 • Flexibility to model complex details
 • Borrowing of parts, scrapping, capacity constraints, engine harvesting processes
 • Use probability distributions for repair times, demand, etc.
 • Provides insight of the relationship between engine spare parts ownership and spare engines
 • Provides performance metrics for commercial aviation:
 • Out-of-Service (OTS) aircrafts
 • Allows What-If analysis

• Two models
 • Spare engines
 • Shop pool (spare parts)
Engine Spare Model

- Repair is centralized
- Available inventory
 - Centralized: single location
 - Distributed: multi-location

- Key parameters:
 - Repair time
 - Demand
 - Capacity constraints
 - Harvesting schedule

- In the multi-location setting, dispatching rules are utilized to decide on the next station to receive the next serviceable spare

- Simulation is conducted in multiple replications where the output corresponds to variation of the spare level over time
Performance Metrics & Estimating Ownership: Traditional Service Level & OTS Events

• Traditional Service Level:
 • Ratio of successfully satisfied engines or parts demand to the total number of spare requests received
 • Probability of availability of an engine or part when needed
 • Input used to estimate ownership from simulation output

• Out-of-Service (OTS) Aircraft Events Related-Metrics
 • Expected number of events
 • Expected duration
Shop Pool Model

- Lower level of the engine repair process
 - Piece-part repair (PPR) process

- Key parameters:
 - Engine turn-time (TAT) goal for PPR,
 - Repair probabilities
 - Scrap rates
 - Capacity constraints

- Simulation output corresponds to the variation of spare parts level over time

- Simulation conducted for 300+ different engine parts

Diagram:

1. Engine Arrival
2. Assign Repair Program
3. Engine Disassembly
4. Repair?
 - Yes: Repair Parts
 - No: Scrap?
5. Scrap?
 - Yes: Purchase New Parts
 - No: Borrow?
6. Borrow?
 - Yes: Add Part to Shop Pool
 - No: End
7. Wait TAT Goal & Build Engine
Software Implementation

• “Calculation tool” for the end-user
• Implements
 • User side
 • Server side
Shop Pool & Spare Engines Calculation Tools

Software tools implemented for 4 different engines types: CFM56 (B737), CF6-80 (B767), RB211 (B757), and JT8D (MD80).

- Automation allows updating parameters using historical transactional data stored in AA’s databases.
Case Study:
Impact of Engine Repair TAT in Spare Ownership

TAT (3 days)

Spare Engines

Time (days)
Case Study: Impact of Engine Repair TAT in Spare Ownership

- Slower repair process demands a larger number of spares.
Case Study: Impact of Engine Repair TAT in Spare Ownership

- Our models were used here to plan for the spare engine requirements at 99% service level as the airline planned to shorten the engine repair turn-around-time (TAT), leading to a lower number of spare engines requirement.
Case Study:
Impact of Engine Repair TAT in Shop Pool Investment

Part repair time

Engine

Engine parts

Inventory

Time (days)

TAT
Case Study:
Impact of Engine Repair TAT in Shop Pool Investment

- Once the engine repair TAT goal was set, a second part of the planning process was to determine the level of shop pool investment required to achieve such goal. In general, decreasing the engine repair TAT leads to an increase in the shop pool investment.
Case Study: Impact of Engine Spare Borrowing Between Stations on the Duration of OTS Events

- Measuring the duration of Out-of-Service Aircraft (OTS) events allowed us to develop borrowing rates in such way that hubs are better covered.

![Chart showing the average duration of OTS events with and without borrowing of spare engines.](chart.png)
Impact to AA

• Better spare ownership planning

• Significant savings vs. previous manual methodologies
 • As AA upgrades the fleets, the more accurate planning methodology provides benefits
 • Retiring fleets
 • Growing fleets
 • Millions of dollars (e.g., 15%-27%) in shop pool parts

• Application is currently patent-pending
Conclusions

• Simulation is the preferred approach due to the complex features of the repair processes and variability

• The simulation approach provides the necessary level of accuracy to plan for spare engines and engine parts given the financial and operational significance of the problem

• Simulation allow us to measure the service level in a more relevant way in terms of OTS related metrics

• Current extension to other key assets, e.g., Auxiliary Power Units
Acknowledgements

• Our sincere thanks to all the colleagues in American Airlines that have supported in different ways the development and implementation of this application

 • Special thanks to Matt Pfeifer, Richard Czuchlewski, and Juan Leon from the Operations Strategic Planning group

 • The Engine Production Control team at the American Airlines Tulsa Maintenance Base

 • Jim Diamond, Managing Director of Operations Research & Advanced Analytics in American Airlines

• Special thanks to Byron Totty for providing the wonderful pictures included in this presentation

• Finally, our thanks to the organization and judges of the INFORMS Innovation in Analytics Award competition for taking the time to review and evaluate our work, we really appreciate it