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COLLABORATORS

I Ehsan Jahangiri (former PhD student, JHU)
I Erdem Yoruk (former PhD student, JHU)
I Laurent Younes
I Rene Vidal
I Many of the basic ideas go back to work with Bruno

Jedynak on “active testing” for tracking and with Yali Amit on
decision trees and coarse-to-fine indexing for object
detection.
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MACHINES VS. HUMANS

I Interpreting scenes is effortless and instantaneous for
people, even generating rich semantic annotations (“telling
a story”).

I Machines lag very far behind in understanding images, and
building a description machine remains a fundamental A.I.
challenge.

I This remains true even for the restricted task of detecting
and localizing all instances from a set of object categories.
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STREET SCENES

4 / 52



TABLE SCENES
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OUTLINE

I General Query Model
I Information Pursuit
I Table Settings
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SCENE VARIABLES

I I ∈ I: observed image of an underlying visual scene.
I Z ∈ Z: latent description or interpretation of the scene.
I U ∈ U : other typically unobserved components, e.g.,

camera properties and view angles.
I Assume that Z , U and I are random variables on some

probability space.
I Goal: Reconstruct (as much as possible about Z ) from the

observation of I.
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MOTIVATION FOR A MODEL

I Despite a mass migration to deep learning, due in part to
genuine advances and ubiqitous success stories, there is
no evident path from object detection to deep semantic
annotation, e.g., story telling.

I Interesting attributes of natural vision and decision-making
which are missing in most machine vision systems:

I Exploiting context to remove amibiguities.
I Analyzing scenes at different levels of resolution which is

often coarse-to-fine.
I Excelling at games like “Twenty Questions” by asking the

right questions in the right order.
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QUERIES

I We acquire evidence from different levels of semantic and
geometric resolution and integrate the evidence by updating
likelihoods.

I Evidence is collected from the answers to a series of
queries q about I from a specified set Q.

I Yq = fq(Z ,U): a bit of information or “annobit” (not
necessarily binary).

I The dependency on U allows q to depend on locations
relative to the observed image.

I Strategy: Progressively estimate annobits by running
matching, unit cost classifiers, Xq(I),q ∈ Q.

I We think of Yq as the true answer and Xq as an imperfect
answer in a “Twenty Questions” game.
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EXAMPLES OF ANNOBITS

I Scene context: global labels such as “indoor” and ”street
scene.” etc. Not used here.

I “Part-of” descriptors: Indicate that a region R belongs to a
larger structure (e.g.,road, building, table).

I Existence descriptors: Indicate the presence of objects with
certain attributes (e.g., category and pose).

I Derived annobits are also useful, e.g., a list of object
categories with instances visible within a region.
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QUERY MODEL

I Assume YQ = (Yq,q ∈ Q) is a sufficient statistic for XQ:

P(XQ|Z ) = P(XQ|YQ).

I Assume a prior scene distribution for Z and a prior
camera/viewpoint distribution for U.

I The prior model p(z) encodes knowledge about likely and
unlikely configurations (spatial context).

I Combining the prior with the data model P(XQ|YQ) would in
principle allow us to sample from the posterior P(Z |XQ),
which modulates or contextualizes raw classifier output.
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OUTLINE

I General Query Model
I Information Pursuit
I Table Settings

12 / 52



QUERY ORDERING

I Set q1 = arg maxq∈Q I(Xq,YQ).
I Thereafter, for k > 1 and given an image I,

qk(I) = arg max
q∈Q

I(Xq,YQ|ek−1(I))

where ek−1(I) is the “evidence” or “history” after k − 1
queries: ek−1(I) = {Xq`

= x`, ` = 1, . . . , k − 1}, x` = Xq`
(I).

I We sometimes denote the history by
(q1, . . . ,qk−1, x1, . . . , xk−1).

I Note that the conditional distribution for the mutual
information is the posterior distribution of (Xq,YQ) given
Xq1 , ...,Xqk−1.
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FIRST CHARACTERIZATION

I Since I(Xq,YQ|ek−1(I)) =

H(YQ|ek−1(I))− H(YQ|Xq,ek−1(I)),

the next question qk(I) for image I is the one whose
addition will minimize H(YQ|Xq,ek−1(I)).

I Here, again, YQ and Xq are random variables, and the
conditional entropy is computed for the conditional
probability P(·|ek−1(I)).

14 / 52



SECOND CHARACTERIZATION

I We also have I(Xq,YQ|ek−1(I)) =
H(Xq|ek−1(I))− H(Xq|YQ,ek−1(I)).

I This implies that the next question for image I is selected
such that

I H(Xq|ek−1(I)) is large, so that its answer is as unpredictable
as possible given the current evidence and

I H(Xq|YQ,ek−1(I)) is small, i.e., Xq is a “good” classifier.
I The two criteria are however balanced, so that one could

accept a (currently) relatively poor classifier if it is
(currently) highly unpredictable.
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AN APPROXIMATION

I Depending on P(XQ,YQ), these conditional entropies may
not be easy to compute.

I For table settings, we neglect the error made by Xq at the
selection stage, replacing Xq by Yq.

I Consequently,

qk = arg max
q∈Q\{q1,...,qk−1}

H(Yq|ek−1(I)).

I However, XQ and YQ are not assumed to coincide in the
conditioning event {ek−1(I)} (which depends on the X
variables) so that the accuracy of the classifiers is still
accounted for when updating the posterior.
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CONDITIONAL INDEPENDENCE

I Selection is simplified if one assumes that the classifier
outputs are conditionally independent given YQ.

I In that case, using the fact that ek−1 only depends on the
realizations of X , one has

H(Xq|YQ,ek−1(I)) = {
H(Xq|YQ) if q 6∈ {q1, . . . ,qk−1}
0 otherwise

I Therefore the conditional entropy is directly computable
from the data model.

I The other term H(Xq|ek−1(I)), can be computed using
Monte-Carlo simulations with a complexity similar to the
oracle approximation.
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Z VERSUS Y

I We have used the annobits YQ to represent the unknown
scene Z in selecting questions.

I H(Z |ek−1(I))− H(YQ|ek−1(I)) = H(Z |YQ,ek−1(I)).
I The difference is small if the residual uncertainty of Z given

YQ is small, which is the approximation made here.
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OUTLINE

I General Query Model
I Information Pursuit
I Table Settings
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PRIOR MODEL

I Here U = (W ,T ), where
I W is the set of intrinsic (calibration matrix) and extrinsic

(pose in 3D) camera parameters;
I T specifies the table dimensions and we assume the table is

centered at the origin and lies in the xy-plane of the 3D
coordinate system.

I The homography H is a function ofW.
I The r.v.s (Z ,T ) andW are assumed independent and the

prior model is then P(Z ,T ,W) = P(W)P(T )P(Z |T ).
I Will skip P(W) and P(T ).
I Recall Yq = fq(Z ,U); hence the distribution of (Yq,q ∈ Q) is

determined by the prior.
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SCENE DISTRIBUTION

I M0(T ): A partition of the table into 5cm× 5cm “cells”.
I Z = {Zc,m, c ∈ C,m ∈M0(T ): binary variables indicating a

the presence of at least one instance of category c
centered in m.

I Scale is determined by the table dimensions (for our
categories).

I P(Z |T ): A Gibbs distribution

Pλ(Z |T ) ∝
∑

i

λigi(Z )

where gi is distinguished set of “features”.

21 / 52



TABLE MESH
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FEATURES

I The set of features includes each Zc,m.
I It also includes coarser locators Zc,m which are indexed by

two coarser partitions m ∈ M1(T ) ∪M2(T ) using
15cm × 15cm cells and 45cm × 45cm cells, repectively.

I Notice that for m ∈ M1(T ) we have
Zc,m = maxm′∈M0(T ),m′⊂m Zc,m′

and similarly for Zc,m,m ∈ M2(T ).
I In addition, there are conjunction features

g(z) = Zc,mZc′,m′ ,m,m′ ∈ M1(T ), for “nearby” m,m′.
I Such features allow for inhibiting nearby co-occurrences of

some categories (e.g., two plates), or of two different
categories, and promoting co-occurences other categories
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FEATURES (CONT)

d

Fine-level singleton

Middle-level singleton Singleton OR Conjunction

Coarse-level singleton

I The singleton features accommodate the overall empirical statistics for
localized object instances.

I The conjunction feature functions incorporate contextual relations
between different object categories.
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JHU TABLE-SETTING DATASET
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LEARNING

I We exploit symmetry in table-settings to reduce the number
of parameters, for instance, given T , group features whose
weights λ are expected to be the same.

I Still, estimating the (surviving) λ is difficult due to the large
number of parameters and relatively small number of
annotated table settings.

I To overcome this, we learn the parameters from synthetic
data - samples from a high-resolution, generative attribued
graph model in the world coordinate system.

I The model has many fewer, and far more interpretable,
parameters and can be efficiently learned from limited
number of manually annotated images.
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LEARNING (CONT)

I Essentially a multi-type branching process with vertices
attributed by category and 3D pose.

I Direct (unconditional) sampling is trivial, and we can
generate an arbitrarily large synthetic training set for
estimating pλ(z).

I We learned 10 models P(z|T ) for 10 different table sizes
using stochastic gradient descent, iteratively minimizing the
KL divergence between the Gibbs and empirical distribution.
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EXISTENCE ANNOBITS

I Objects are attributed a category and an apparent pose in
the image coordinate system, taken here as the location of
the center and the size (e.g., diameter).

I The pose space is then D × (0,+∞) where D is the image
domain normalized to D = [0,1]2.

I Object instance: (c, x , s) with c ∈ C, x ∈ D and s > 0.
I A: finite set of “windows” or “annocells” W ⊂ D arranged in

a 4-level hierarchy of varying sizes; |A| = 1036.
I J : finite set of size intervals J.
I Yc,W ,J = 1 if an instance from c with size in J is visible in W .

(Write Yc,W if J = (0,+∞).)
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ANNOCELL HIERARCHY
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DERIVED ANNOBITS

I Can be defined to match the type of classifiers available.
I We use the collection

YW = (Yc,W , c ∈ C).

I We also use Y s
W ,J , a binary variable indicating whether the

average size of the objects present in W belongs to J, and
define Y t

W = 1 if W is part of the table and Y t
W = 0

otherwise.

30 / 52



CLASSIFIERS

I Variables XW , W ∈ A, predict YW by providing “weights” on
categories c ∈ C and “background.”

I Variables X s
W , W ∈ A, provide “weights” on J .

I Variables X t
W ,W ∈ A′ (where A′ is a subset of A) to predict

Y t
W .
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CNN CLASSIFIERS

I We trained (the last layers of) three deep CNNs, all based
on the VGG-16 network (up to layer 15):

I CatNet: for category classification,
I ScaleNet: to estimate the scale of detected object instances,
I TableNet: to detect the table surface area in a given image.

I The CatNet is a CNN with a 5-way softmax output layer
used to predict Y W .
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CATNET TRAINING

I A patch including multiple object instances appears multiple
times in the training set, each time with the category label of
one of the existing instances.

I The CatNet was trained by minimizing the cross-entropy
loss function using stochastic gradient descent.

I Training took about 24 hours when the first 15 weight layers
were initializing by the first 15 weight layers from the
VGG-16 network.
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SCALENET AND TABLENET

I ScaleNet estimates the ratio of average object scale (in
pixels) to the size of the input patch, which stays
unchanged after resizing the original input to 224× 224.

I TableNet is a CNN trained to label a patch A as “part of a
table setting” or “not part of a table setting.” Ouputs used to
estimate the boundary of the table.
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POOR “PLATE” DETECTIONS BY CNNS
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“GLASS” DETECTIONS BY CNNS
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CONTEXTUALLY INCONSISTENT DETECTIONS
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CNN DETECTION EXAMPLES
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TABLE DETECTION BY TABLENET
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DIRICHLET DATA MODEL FOR CATNET

I The CNN classifier XW predicts which object categories
have instances inside W , returning a probability vector of
dimension K = 1 + |C|, the extra dimension for “none”.

I We model the conditional distribution of XW given the
annobits YW = (Yc,W , c ∈ C) is as a K -dimensional Dirichlet
distribution.

I We learned 16 conditional CatNet data models (MLE) for
the 16 possible subsets of four object categories.

I The training data are obtained by running the CNNs on
patches with matching configuration.

I Similarly for ScaleNet.
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MAXIMUM LIKELIHOOD ESTIMATES
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MAXIMUM LIKELIHOOD ESTIMATES (CONT)
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POSTERIOR SAMPLING

I Posterior sampling was carried out in three nested loops
corresponding to factoring the posterior at step k :

P(Z ,T ,H|ek) = P(T |ek)P(H|T ,ek)P(Z |T ,H,ek).

I Outer Loop: sampling table size (Metropolis-Hastings)
I Middle Loop: sampling homography (Metropolis-Hastings)
I Inner Loop: sampling MRF model (Gibbs sampling)

I Given posterior samples of (Z ,H), directly obtain posterior
samples of YQ, and hence can estimate H(Yq|ek) for all
new q.
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FULL POSTERIOR DETECTIONS
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EP DETECTIONS (STEP 40)
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CNN DETECTIONS
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EP QUESTIONS (STEPS 1-4)
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EP QUESTIONS (STEPS 51-54)
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EP QUESTIONS (STEPS 81-84)
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PRECISION-RECALL CURVES
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CONCLUDING REMARKS

I Assets:
I Coarse-to-fine search emerges naturally.
I Ambiguities due to conflicting evidence sometimes resolved.
I A fraction of the classifiers may be sufficient.

I Liabilities:
I The treatment of context is limited. Compositional models do

it the right way.
I Many moving parts.
I Replacing Xq by Yq in query selection is unncessary and

may degrade performance.
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